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Abstract

We explore how ideas and practices common in Bayesian modeling can be applied to

help assess the quality of 3D protein structural models. The basic premise of our

approach is that the evaluation of a Bayesian statistical model's fit may reveal aspects

of the quality of a structure when the fitted data is related to protein structural proper-

ties. Therefore, we fit a Bayesian hierarchical linear regression model to experimental

and theoretical 13Cα chemical shifts. Then, we propose two complementary approaches

for the evaluation of such fitting: (a) in terms of the expected differences between exper-

imental and posterior predicted values; (b) in terms of the leave-one-out cross-validation

point-wise predictive accuracy. Finally, we present visualizations that can help interpret

these evaluations. The analyses presented in this article are aimed to aid in detecting

problematic residues in protein structures. The code developed for this work is avail-

able on: https://github.com/BIOS-IMASL/Hierarchical-Bayes-NMR-Validation.
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1 | INTRODUCTION

Bayesian statistics offers very suitable theoretical advantages for

developing models involving bio-molecular structural data and has

been applied in numerous tools and methods in this context.1–6 Fur-

thermore, Bayesian methods are capable of accounting for errors and

noise of variable source and nature, which is suitable for working with

bio-molecular experimental data.7

In statistics, partially pooling data means to separate observations

into groups, while allowing the groups to remain somehow linked in

order to influence each other. In a Bayesian setting, such sharing is

achieved naturally through hierarchical modeling. In hierarchical models

(also called multilevel models), parameters of the prior distributions are

shared among groups, inducing dependencies and allowing them to

effectively share information.8–10 Advantages of hierarchical Bayesian

modeling include obtaining model parameter estimates for each group

as well as for the total population. In addition, using shared prior distri-

butions helps prevent the models from over-fitting.11

As the word model is used in both Bayesian statistics and protein

science, throughout this article we deliberately use the word model to

discuss statistical models and structure to discuss protein 3D models,

thus avoiding potential confusion.

In this study, we fit Bayesian models to experimental 13Cα chemi-

cal shifts. We focus specifically on 13Cα chemical shifts because they

have proven to be informative on protein structure at the residue

level and have been used in determination and validation in previous

work by us and others.12–15 Another convenient aspect of working

with 13Cα chemical shifts is that their theoretical values can be com-

puted with high accuracy using quantum-chemical methods.13

Bayesian model comparison and evaluation is standard in Bayesian

applications as it constitutes an essential part of the Bayesian

workflow.16 A variety of methods have been proposed for this task,

helping Bayesian practitioners evaluate, critique, and ultimately under-

stand their models. In the present work, we propose two complemen-

tary approaches for the evaluation of protein structures. Both are

related to different ways of analyzing the results of a Bayesian hierarchi-

cal linear model linking experimental and theoretical 13Cα chemical

shifts. For the first approach, we compare structures in terms of their

residuals (i.e., the difference between the observed and predicted

values). To ease the comparison, we put the residuals in the context of
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reference densities which are pre-computed from a data set of high-

quality protein structures (see Methods and Software section for

details). In the second approach, we evaluate the statistical model's fit in

terms of its out-of-sample predictive accuracy, that is, the predicted

accuracy computed from data not used to train the model. The out-of-

sample predictive accuracy can be estimated using leave-one-out cross-

validation, which requires to re-fit a model n times, with n being the size

of the data set (i.e., the number of 13Cα chemical shifts). As this can be

too costly and cumbersome, in this work we use an alternative; the

Pareto smoothed importance sampling leave-one-out cross-validation

(LOO for short).17,18 LOO offers an accurate, reliable, and fast estimate

of the out-of-sample prediction accuracy from a single model fit. Addi-

tionally, the predictive accuracy is computed per observation, this is

equivalent to computing the predictive accuracy per residue, as the

observations are 13Cα chemical shifts. This allows us to make statements

of the quality of the structure at both global and per residue level.

We expect the methods and visualizations presented here to

introduce Bayesian model checking tools to protein scientists. In addi-

tion, we hope these methods are adopted by protein scientists to help

them evaluate the quality of a given structure. This may include the

structure determination process before structure deposition at

the Protein Data Bank (PDB), ideally as part of the PDB's validation

pipeline.19 Or even after deposition, such as evaluating a structures

quality before further research like, for example, performing docking

or template-based modeling. For this, the code developed for this

analysis (see Abstract) can take as input *.pdb or BMRB files before

deposition in these databases, as long as they have a correct format in

the case of *.pdb files. For BMRB files, NMR-Star or column-separated

format files can be taken as input.

2 | METHODS AND SOFTWARE

2.1 | Reference data set

A reference data set of 111 high-quality protein structures was

obtained from the Protein Data Bank. Each structure in this set has a

resolution ⩽2.0 Å and R-factors ⩽0.25. The structures were solved in

the absence of DNA, RNA, or glycan molecules. Additionally, every

structure in our set has a corresponding entry at the Biological Mag-

netic Resonance Bank (BMRB) from which experimental 13Cα chemical

shift data were obtained.20 Theoretical 13Cα chemical shift data were

computed from the Cartesian coordinates of each structure in this set,

using CheShift-2.15 The residues with the largest absolute differences

between theoretical and experimental 13Cα chemical shifts, rep-

resenting 1% of the total data set size, were removed from the analy-

sis. These differences were larger than 3.77 ppm.

2.2 | Target structures

Theoretical 13Cα chemical shift data were obtained for two structures

of protein Ubiquitin under PDB ids: 1UBQ and 1D3Z.21,22 Code id.:

1UBQ corresponds to an X-ray crystallography determined structure

of Ubiquitin, while 1D3Z corresponds to an NMR determined struc-

ture. The latter contains 10 different conformations, corresponding to

the structures with the lowest energy from 54 computed conforma-

tions.21,22 We computed and averaged the theoretical 13Cα chemical

shifts for those 10 conformations. Additionally, the experimental 13Cα

chemical shift set used in this analysis was taken from BMRB entry

No: 6457, and is the same experimental data set used in the NMR

determination of 1D3Z. In this study, the same experimental 13Cα

chemical shift set was used for both structures, but the theoretical
13Cα chemical shift set is different for each structure, given that it was

obtained from the Cartesian coordinates of the PDB entries 1UBQ

and 1D3Z. This particular data set construction for the target struc-

tures allows us to compare 1D3Z and 1UBQ based solely on the dif-

ferences between the 3D coordinates of their structures.

In order to further strengthen the demonstrations presented in

this article, theoretical and experimental 13Cα data were obtained for

an obsolete target structure under PDB id.: 1WDB, associated with

BMRB No 5745.

2.3 | Hierarchical linear model

A Bayesian hierarchical linear regression model was fitted to the

experimental (CSe) and theoretical (CSt) 13Cα chemical shifts con-

tained in the reference data set. The full model is described by Expres-

sion 1 using standard statistical notation and it is also represented in

Figure 1 in Kruschke's diagrams.23

The model groups the data into r groups, in total there are

19 groups, one for each amino acid with Cysteine being excluded

given that CheShift-2 does not offer reliable calculations for this

amino acid.15 For each group we fit a linear regression by finding the

parameters αr and βr. These parameters are partially pooled, meaning

that they are not free to vary but instead they are restricted by the

parameters ασ and βσ respectively. We assume that the experimental
13Cα chemical shifts are conditionally Gaussian with the mean being a

linear function of the theoretical 13Cα chemical shifts, and unknown

SD, which we also assume to take a different, but partially pooled

value σr.

The data was normalized before fitting by subtracting the empiri-

cal mean and dividing by the empirical SD.

ασ � HN 1ð Þ
βσ � HN 1ð Þ
σσ � HN 1ð Þ
αr � N 0,ασð Þ
βr � HN βσð Þ
σr � HN σσð Þ
μr ¼ αr þβrCStr
CSer � N μr ,σrð Þ

ð1Þ

where HN 1ð Þ stands for half-normal distribution with SD 1. N 0,Xσð Þ
is a normal distribution with mean 0 and SD Xσ. CStr represents
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theoretical 13Cα chemical shifts and CSer the experimental ones. The

sub index r denotes each of the at most 19 groups present in a given

structure.

2.3.1 | Hierarchical linear model for target
structures

For each one of the target structures, that is, the structures we want

to validate, their theoretical and experimental 13Cα data were included

as part of the reference data set to then, run Model 1. This is done in

order to use the data from the reference structures to help regularize

the inference for the target structure. For subsequent analysis, only

the observations corresponding to the target structures were

considered.

2.4 | Computation of the posterior predictive
distribution of 13Cα chemical shifts and reference
densities

From the fitted hierarchical model, the posterior predictive distribu-

tion was computed, that is the distribution of 13Cα chemical shifts as

predicted by the statistical model. We will refer to this set as

corrected 13Cα chemical shifts. Then, the reference densities were

computed as the difference between the corrected and experimental
13Cα chemical shifts from the reference data set for each of the

19 most common amino acids present in proteins (with Cysteine

excluded as previously explained). Intuitively, the reference densities

are an approximation to the expected distribution of the difference

between experimental and corrected 13Cα chemical shifts. The differ-

ence between corrected and experimental 13Cα chemical shifts was

also computed for the target structures, where the corrected set was

defined from the posterior predictive distribution of the model fitted

to the structure's 13Cα chemical shift data (see Section Hierarchical lin-

ear model for Target structures).

2.5 | Model comparison and cross-validation

When faced with more than one model for the same data it is natu-

ral to ask which model is the best at explaining the data, and more

broadly, how are models different from each other and what they

have in common. One way to assess a model is through its predic-

tions. In order to do so, we can compare a model's predictions to

experimental data. If we use the same experimental data used to fit

the model, that is, we compute the within-sample error, we may

become overconfident in our model. The simplest solution is to

compute the out-of-sample error, that is, the error that a model

makes when evaluated on data not used to fit it. Unfortunately,

leaving a portion of the data aside just for validation is most often

than not a very expensive luxury (e.g., during NMR structure

determination).

The log predictive density has an important role in model compar-

ison because of its connection to the Kullback–Leibler divergence, a

measure of closeness between two probability distributions.11 For his-

torical reasons, measures of predictive accuracy are referred to as

information criteria and they are a collection of diverse methods that

allow to estimate the out-of-sample error without requiring external

data. In a Bayesian context, one such measure is LOO.17,18,24 In the

next subsections, we will briefly explain some of the details related to

LOO, specifically those more relevant for this study.

2.5.1 | LOO

The cross-validated leave-one-out predictive distribution p(yijy�i)

(or most commonly its logarithm) can be used to assess the out-of-

sample prediction accuracy. In the present work this means the proba-

bility, according to the model, of observing the ith 13Cα chemical shift

when that 13Cα chemical shift is not included in the fitting.

Computing p(yijy�i) can become costly as it requires to fit a model

n times (where n is the data set's size). Fortunately, the leave-one-out

predictive distribution can be approximated by using importance

weights. The variance of these importance weights can be large or

even infinite, LOO applies a smoothing procedure that involves

replacing the largest importance weights with values from an esti-

mated Pareto distribution. For details on how this is done and why it

F IGURE 1 Krushke diagram representing the hierarchical linear
model featured in this work
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works see Vehtari et al. (2017).17 What is most important for our cur-

rent discussion is that the κ̂ parameter of such a Pareto distribution

can be used to detect highly influential observations, that is, observa-

tions that have a large effect on the predictive distribution when they

are left out. In general, higher values of κ̂ can indicate problems with

the data or model, especially when κ̂ >0:7.
18,25

2.5.2 | LOO-PIT

PIT (Probability Integral Transform), known as the universality of the

uniform distribution, states that given a random variable with an arbi-

trary continuous distribution, it is possible to create a uniform distri-

bution in the interval [0, 1]. Specifically, given a continuous random

variable X for which the cumulative distribution function is FX, then

FX Xð Þ ~U 0,1ð Þ.
LOO-PIT is obtained by comparing the observed data y to poste-

rior predicted data ~y. The comparison is done point-wise. Given:

pi ¼P ~yi ≤ yi j y�ið Þ

LOO-PIT is computing the point-wise probability that the poste-

rior predicted data ~yi has a lower value than the observed data yi. For

a well-calibrated model the expected distribution of p is the uniform

distribution over the [0, 1] interval, that is, a standard

uniform distribution (see Figure 2). Deviations from uniformity indi-

cate different mismatches between the data and the predictions made

by the model, see Figure 2 for a few idealized examples. LOO-PIT

density. An important advantage of using the leave-one-out predictive

distribution instead of just the predictive distribution is that with the

former, we are not using the data twice (once to fit the model and

once to validate it).11,25

2.5.3 | Expected log predictive density

Finally, we can compare models point-wise using their expected log pre-

dictive density (ELPD), where the expectation is taken over the whole

posterior. In other words, the predictions take into account

the parameter's uncertainty, as expressed by the statistical model and

data. Notice that the value of the ELPD is not useful by itself as it cannot

be interpreted in absolute terms, but can be used to compare the relative

fit of residues within a same structure and/or to compare the relative fit

of residues from two or more structures, as long as the models are fitted

to the same data. While the values of κ̂ indicate how influential an

observation is, that is, how much the predictive distribution changes

when they are left out, the ELPD indicates how difficult it is for the

model to predict a particular observation. In this sense, large absolute

ELPD differences indicate disparities in how two models fit the same

observation. Thus, if two models are exactly the same, the ELPD dif-

ference will be zero. Although, there is no hard-threshold for analyzing

ELPD differences, values lower than ±4 can be considered small.

2.6 | Reference data set model fit, B-factors, and
structural dissimilarity

The quality of the described model fit to the reference data set was

assessed in order to ensure the reliability of the analysis presented in

this article for the target structures. This was done through the com-

putation of the expected log predictive density, κ̂ parameter values,

and LOO-PIT.

Correlation with the Cα B-factors of the reference and target

structures was also investigated for the ELPD and κ̂ values.

In order to search for a correlation between the ELPD values and

the structural dissimilarities between the 1D3Z and 1UBQ target

(a) (b)

(c) (d)

F IGURE 2 Schematic representation of a few possible LOO-PIT curves. On panel (A), the uniform distribution indicates that the model is
well-calibrated. On panel (B) there are more observations for low and high values (and less in the middle) compared with what the model is
predicting. In other words, the predictive distribution is narrower than the observed one. On panel (C) there are more observations around
intermediate values (and less for low and high values) compared with what the model is predicting, in other words the predicted distribution is
broader than the observed one. Finally, on panel (D), there are more observations on the right tail than in the left tail compared with what the
model is predicting, that is, the model is biased toward predicting lower values than observed
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structures, the Cα RMSD (root-mean-squared deviation) was com-

puted between the structures. For 1D3Z, the RMSD was computed

against 1UBQ for each of the 10 conformations and then averaged.

2.7 | Software

All Bayesian models were solved with PyMC3.26 ArviZ was used to

compute LOO, ELPD, and related plots.27 PyMOL was used to visual-

ize 3D protein structures.28

3 | RESULTS

In this work, we explore the quality of protein structures using 13Cα

chemical shifts through the evaluation of a Bayesian hierarchical linear

model's fit. An important aspect of fitting this particular model is the esti-

mation of the effective reference value for the 13Cα chemical shifts. This

is important as wrong referencing can be an issue when working with

chemical shifts. In our study, the estimated reference value is unique for

every protein in our data set. Moreover, by using a hierarchical model,

we obtained a correction specifically for every one of the 19 most com-

mon amino acids that constitute proteins (as already mentioned Cysteine

is excluded). Said effective reference is accounted for in every posterior

analysis made on the model's fit. Moreover, the eventual circumstance of

wrong referencing of 13Cα chemical shifts in our reference data set is

automatically fixed through the linear model, that is, if there is a system-

atic error in the data set, Model 1 accounts for it. Issues related to mis-

assignments of 13Cα chemical shifts are still problematic. Nevertheless,

they are uncommon so, on average, over the 111 reference structures,

misassignments should be rare. Additionally, we removed the 1% resi-

dues with the largest differences which is a simple way to account for

gross errors from different sources, including misassigments.

We present two approaches for the Bayesian model's fit evalua-

tion. The first approach analyses differences between corrected and

experimental 13Cα chemical shifts. This is highly appealing as the com-

parison is done using a familiar metric for protein scientists, especially

NMR spectroscopists. The second approach instead evaluates the

model's fit using the LOO predictive distribution, which is a general

and widely accepted way to assess Bayesian statistical

models.11,17,18,25 Both methods complement each other, the first one

focuses on how well the corrected 13Cα chemical shift agrees with the

expected distribution while the second approach is based on how well

the model predicts the data. The combined usage of both approaches

can help spectroscopists and protein scientists in general to flag prob-

lematic residues that may deserve further attention.

3.1 | Hierarchical linear model fit to the reference
data set

Figure S1 in SM shows that most of the ELPD values for the reference

data set take values between 0 and �4 and that they exhibit no

correlation with the Cα B-factors of the reference structures. Similar

conclusions can be drawn from Figures S2 and S3 in SM for 1D3Z

and 1UBQ.

In Figure S4 in SM we observe that the hierarchical model used in

this work is well calibrated for the reference data set as the LOO-PIT

density is similar to panel (A) in Figure 2. Furthermore, Table S1 in SM

shows parameter estimates for the reference data set. Effective Sam-

ple Size (ESS) and R̂ diagnostics are also shown as proof of conver-

gence of the hierarchical Bayesian model.

3.2 | Correlation between B-factors with ELPD
and κ̂ values

Figure S5 in SM shows no correlation between the κ̂ values and the

Cα B-factors for the target structures. Figure S6 in SM shows

the RMSD between 1D3Z and 1UBQ versus the absolute ELPD dif-

ference, also showing no correlation between these values.

3.3 | Difference between experimental and
corrected 13Cα chemical shifts

Using reference densities on the differences between corrected and

experimental 13Cα chemical shifts obtained from high-quality struc-

tures can help contextualize particular differences found in the 13Cα

chemical shifts of any given NMR structure. This results in a straight-

forward way to assess how problematic is each residue in the

structure.

The reference densities for the amino acid types present in

Ubiquitin are plotted in light blue in Figure 3. As expected, these dis-

tributions have zero-mean but most importantly they have different

variances. Even when we did not perform any formal test to evaluate

if and how these densities depart from a Gaussian distribution we can

see that most of the reference densities are skewed or have more

than one peak (most likely reflecting sub-populations of 13Cα chemical

shift differences corresponding to α-helix and β-strands). These distri-

butions also reflect variations among amino acids related to natural

abundance as well as chemical features. For example Glycine, which is

the most abundant amino acid and the one spanning broader regions

on the Ramachandran map, has the smoothest curve. Given all these

particularities, comparing differences between observed and

corrected 13Cα chemical shifts in terms of a single common variance

can be misleading. Instead, we use quantiles computed per each

amino acid's distribution. Specifically, we used the 0.05, 0.2, 0.8, and

0.95 quantiles. Thus, we divide the reference densities into a central

60% (between the 0.2 and 0.8 quantiles) a 30% (15% between 0.05

and 0.2 and another 15% between 0.8 and 0.95) and finally the

remaining 10% for values below 0.05 and above 0.95. In Figure 3 we

can also see the differences for every residue in structures 1D3Z and

1UBQ represented as circles and crosses below each reference den-

sity. We use color to help interpret such differences, green if the 13Cα

chemical shifts difference is found in the central 60%, yellow if it is
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found in the 30% around the central values, and orange if it is found

in the 10% most extreme values. It is important to note that even

when a residue is marked orange that does not automatically indicate

it is a poorly determined residue, as in fact we expect that 10% of the

residues from good quality structure to appear orange using the pres-

ented method. Instead, we consider them as residues that may

deserve further attention.15

As we can see the differences in general are small between the

two target structures, with a few exceptions such as Isoleucine

30 and Lysine 27 for 1D3Z and Isolecuine 13, Lysine 27, Lysine

33, Isoleucine 36, Aspartic acid 39, Leucine 50, Arginine 72, and Leu-

cine 73 for 1UBQ. Figure 4 uses the same color-schema from Figure 3

in the context of 3D structures. The accompanying code at the

repository (see Abstract) can automatically generate a file containing

the colored structures as in Figure 4 and can be loaded with PyMOL

or VMD.29

3.4 | LOO predictive distribution

As previously mentioned the LOO predictive distribution is a general

way to assess Bayesian statistical models and is not related to protein

structures in any direct way.11,17,18,25 For a calibrated model, that is, a

model which predictive distribution is in good agreement with the

observed data, the distribution of the LOO probability integral trans-

form (LOO-PIT) is uniform. As this only holds asymptotically, a way to

F IGURE 3 Differences between experimental 13Cα chemical shifts and corrected 13Cα chemical shifts, in ppm units. The reference densities in

light blue are used as a representation of the expected differences between experimental and corrected 13Cα chemical shifts in high-quality NMR
resolved structures. They are divided into a central 60% (between the 0.2 and 0.8 quantiles) a 30% (15% between the 0.05 and 0.2 quantiles and
another 15% between 0.8 and 0.95 quantiles) and finally the remaining 10% for those values below and above 0.05 and 0.95 quantiles. The
markers are displayed in color orange when found in the 10% most extreme values, yellow if they are placed in the 30% around the central values
and green for the central 60%. Circles and crosses represent the 13Cα chemical shifts differences for structures 1D3Z and 1UBQ, respectively
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empirically assess calibration for a finite sample is to compare the

density of LOO-PIT against the density of uniform samples of

the same size as the data used to compute LOO-PIT. Such comparison

is done in Figure 5 for structures 1D3Z and 1UBQ. We can see that

both models seem to be overall well-calibrated. 1UBQ seems to be

slightly worse, but that difference is within the expected margins and

thus we must conclude both structures are on par according to this

diagnostic.

3.5 | Analysis of the κ̂ parameter

The parameter κ̂ of the Pareto distribution used in the computation of

LOO can help spot influential observations, that is, observations that

have a large effect on predictions if left out from the analysis. The

higher this value, the more influential the observation is, with values

above 0.7 being of particular interest (see subsection LOO in Methods

and Software section). Figure 6 shows κ̂ values for 1D3Z and 1UBQ.

In both structures, no residue exceeds the value of 0.7.

3.6 | Expected log predictive density

Figure 7 shows the differences of ELPD between structures 1D3Z and

1UBQ. Globally, these structures seem to be on par, except for Isoleu-

cine 30 that is showing a better agreement for 1UBQ. Residues Isoleu-

cine 13, Leucine 50, and Arginine 72 show better agreement in 1D3Z.

It is worth noting that Figure 7 exhibits a correspondence with Figures 3

and 4. Residues highlighted in orange for 1UBQ in Figures 3 and 4 are

located in the positive region of Figure 7. While 1D3Z's Isoleucine

30, located in the tail of the reference distribution in Figure 3, has a

negative ELPD difference value in Figure 7. Interestingly, residue Lysine

27 flagged by the expected 13Cα chemical shifts differences analysis for

both 1D3Z and 1UBQ, appears very near zero on Figure 7 indicating

that both structures are equal at resolving this observation. The violin

plot in Figure 7 shows that most of the ELPD differences are positive,

indicating that 1D3Z seems to be a better structure than 1UBQ.

3.7 | Summary

Figures 3, 4, and 7 suggest that 1D3Z is a better structure than

1UBQ. This confirms the statements made in previous work, where

the authors even indicated that structure 1UBQ can be improved by

computing an ensemble of conformations.30 The analysis of LOO-PIT

in Figure 5 showed that both structures quality is on par, with 1UBQ

having a slightly worse LOO-PIT. The analysis of κ̂ in Figure 6 shows

that neither 1D3Z nor 1UBQ have influential observations, as

expected for structures of such good quality. In contrast, Figures S7

to S10 in SM, show what to expect of the outcomes of the presented

methods for a target structure of poor quality as the obsolete

structure 1WDB.

F IGURE 4 Differences between experimental 13Cα chemical
shifts and corrected 13Cα chemical shifts superimposed in 3D
structures. 1D3Z is shown on the left and 1UBQ is shown on the
right. The amino acid residues are colored using the same criteria used
in Figure 3. That is, orange when the 13Cα chemical shifts differences
are found in the 10% most extreme values, yellow if they are placed
in the 30% around the central values and green for the central 60%

F IGURE 5 LOO-PIT for 1D3Z and 1UBQ. The thick line corresponds to the observed LOO-PIT density and the thin lines represent
simulations from the standard uniform distribution in the [0, 1] interval for a data set of the same size as the one used to computed LOO-PIT.
From comparison with these simulations we can define what constitutes a deviation from uniformity larger than expected. Both 1D3Z and 1UBQ
are within the expected margins
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4 | CONCLUSIONS

We have presented a collection of tools and visualizations for NMR

protein structure assessment. All of these tools are based on Bayesian

statistical models and established validation methods from the Bayes-

ian statistics field. We consider such visualizations as useful additions

to the current toolbox for protein structure validation. We note that

we are using these Bayesian model comparison tools differently from

standard Bayesian model comparison routines. That is to say, the sta-

tistical model is kept fixed and the 3D structures vary. Thus, when

observing a potential problem we are directly attributing it to the

structure's quality, as we consider that the hierarchical linear model

and the method to compute theoretical 13Cα chemical shifts are in

general good enough for the purpose of protein structure validation.

The hierarchical model proposed in this work seems to correctly

model 13Cα chemical shifts and can be considered an extension to the

constant and linear corrections we have applied in previous

works.13,15,31 With the important addition of the partial pooling of

data provided by the hierarchical structure. Nevertheless, statistical

models should always be considered provisional and thus we encour-

age researchers to explore alternative models. In the meantime, if a

researcher desires to use these tools as part of their validation process

we want to emphasize that the tools and visualizations presented here

are not intended to provide categorical answers about the quality of

structures but instead help experts explore it and, when possible,

guide them to make improvements of such structures. For example,

when observing a high value of κ̂ , this could be indicative of either a

problem with the 3D structural model, indicating that a residue needs

further refinement, or a problem with the hierarchical statistical model

not being able to accurately resolve a particular residue. Given the

structures we have studied in this work, the latter seems unlikely to

occur, and a high value of κ̂ will most likely indicate a problem with

the 3D structural model.

One limitation of 13Cα chemical shifts is that they cannot be

mapped in a 1 to 1 fashion to torsional angle values. That is, they are

multivalued functions of torsional angles. Nevertheless, they can be

useful for validation as we and others have already shown, as they still

provide useful information about torsional angles.12,13–15,32–34 As dif-

ferent observables reveal different aspects of protein structures, we

encourage researchers to perform similar analyses to the ones pres-

ented here using other observables than 13Cα chemical shifts. Further-

more, among the limitations of the presented analysis, we can

mention that if residue Cystein plays a key role in a particular study

posterior to validation with the presented methods, a different

method for computing theoretical 13Cα chemical shifts must be

included in the workflow.
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